Spatially Homogeneous and Isotropic Cosmological Models (FLRW Models)

  1. Einstein A: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitz.-Ber. Preuß. Akad. Wiss., Berlin (1917), 142 - 152 [in German]
  2. de Sitter W: On the Curvature of Space, Proc. Kon. Ned. Akad. Wet. 20 (1917), 229
  3. Friedman A: Über die Krümmung des Raumes, Z. Physik 10 (1922), 377 [in German]
    English translation: Gen. Rel. Grav. 31 (1999), 1991
  4. Friedmann A: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes, Z. Physik 21 (1924), 326 [in German]
    English translation: Gen. Rel. Grav. 31 (1999), 2001
  5. Lemaitre G: A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulae (translated title), Ann. Soc. Sci. Bruxelles I A 47 (1927), 49
  6. Robertson H P: Kinematics and World Structure, Astrophys. J. 82 (1935), 248
  7. Walker A G: On Milne's Theory of World-Structure, Proc. London Math. Soc. 42 (1936), 90
  8. Stabell R, S Refsdal: Classification of General Relativistic World Models, Mon. Not. R. Astron. Soc. 132 (1966), 379
  9. Maartens R, S D Maharaj: Conformal Killing Vectors In Robertson-Walker Spacetimes, Class. Quantum Grav. 3 (1986), 1005
  10. Rindler W: Public and Private Space Curvature in Robertson-Walker Universes, Gen. Rel. Grav. 13 (1981), 457
  11. Ehlers J, W Rindler: A Phase-Space Representation of Friedmann-Lemaitre Universes Containing both Dust and Radiation and the Inevitability of a Big Bang, Mon. Not. R. Astron. Soc. 238 (1989), 503
  12. Matravers D R, G F R Ellis: Evolution of Anisotropies in Friedman Cosmologies, Class. Quantum Grav. 6 (1989), 369
  13. Ellis G F R, D R Matravers: A Note on the Evolution of Anisotropy in a Robertson-Walker Cosmology, Class. Quantum Grav. 7 (1990), 1869
  14. Patzelt H: On Horizons in Homogeneous Isotropic Universes, Class. Quantum Grav. 7 (1990), 2081
  15. Tzanakis C: Spacetimes with Geodesics Projected to Geodesics of a Spacelike Hypersurface: A Generalization of the Robertson-Walker Metrics, Class. Quantum Grav. 8 (1991), 1913
  16. Ellis G F R, T Rothman: Lost Horizons, Am. J. Phys. 61 (1993), 883
  17. Ellis G, R Tavakol: Geodesic Instability and Isotropy of CMWBR, Class. Quantum Grav. 11 (1994), 675
  18. Garecki J: An Interesting Property of the Isotropic and Homogeneous Cosmological Models, Gen. Rel. Grav. 27 (1995), 55
  19. Wainwright J, G F R Ellis (Eds.): Dynamical Systems in Cosmology, (Cambridge: Cambridge University Press, 1997)
  20. Ellis G F R, H van Elst: Deviation of Geodesics in FLRW Spacetime Geometries, Contribution to the Engelert Schücking Festschrift, (New York: Springer Verlag, 1997). Also: Preprint gr-qc/9709060.


Selected References
Last revision: Mon, 14-8-2000 (This page is under construction)